|
|
|
|
|
问荆提取物
植物来源: Equisetum Arvense
提取部位:根,叶。
规格: 7%, 2% 有机硅
4:1比例产品
颜色: 棕黄色粉末
检测方式: HPLC/TLC
产品名称】问荆提取物
【英文名称】Horsetail P.E. 【提取部位】木贼科植物问荆Epuisetuw Arvensel L的全草 【主要成分】有机硅 【规 格】生粉;10:1 【外 观】黄绿色粉末 【检测方法】TLC
【性味归经】甘、苦、凉、肺经、肝经
【用法用量】内服:煎汤,1~3钱(鲜者1~2两)。外用:捣敷或干品研末调敷。
【生态环境】生于潮湿的草地、沟渠旁、沙土地、耕地、山坡及草甸等处。
固定参数:
【生产厂家】长沙上禾生物科技有限公司
联系电话:13657416805
【网筛孔径】一般提取物粉末80-100目
【保 质 期】24个月
【产品包装】铝箔袋/纸板桶,液体用1Kg瓶装或者专用桶装
【保 存】干燥阴凉避光
参考文献:
- 1.
C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)
- 2.
A. Panaček, L. Kvitek, R. Prucek, M. Kolar, R. Večerova, N. Pizurova, V.K. Sharma, T. Nevečna, R. Zboril, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248–16253 (2006)
- 3.
S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microb. 73, 1712–1720 (2007)
- 4.
M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)
- 5.
V. Ilić, Z.V. Šaponjić, V.V. Vodnik, B. Potkonjak, P. Jovančić, J.M. Nedeljković, M. Radetić, The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohyd. Polym. 78, 564–569 (2009)
- 6.
M. Radetić, V. Ilić, V.V. Vodnik, S. Dimitrijević, P. Jovančić, Z.V. Šaponjić, J.M. Nedeljković, Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym. Adv. Technol. 19, 1816–1821 (2008)
- 7.
V. Ilić, Z. Šaponjić, V. Vodnik, D. Mihailović, P. Jovančić, M. Radetić, A study of the antibacterial efficiency and coloration of dyed polyamide and polyester fabrics modified with colloidal Ag nanoparticles. J. Serb. Chem. Soc. 74, 349–357 (2009)
- 8.
Y.-M. Cho, Y. Mizuta, J.-I. Akagi, T. Toyoda, M. Sone, K. Ogawa, Size-dependent acute toxicity of silver nanoparticles in mice. J. Toxicol. Pathol. 31, 73–80 (2018)
- 9.
R. Vazquez-Muñoz, B. Borrego, K. Juárez-Moreno, M. García-García, J.D. Mota Morales, N. Bogdanchikova, A. Huerta-Saquero, Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol. Lett. 276, 11–20 (2017)
- 10.
V.V. Vukovic, J.M. Nedeljkovic, Surface modification of nanometer-scale silver particles by imidazole. Langmuir 9, 980–983 (1993)
- 11.
S. Onitsuka, T. Hamada, H. Okamura, Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids Surf. B 173, 242–248 (2019)
- 12.
M. Chen, Y.G. Feng, X. Wang, T.C. Li, J.Y. Zhang, D.J. Qian, Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23, 5296–5304 (2007)
- 13.
C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential emplications for human health and the environment. J. Nanopart. Res. 12, 1531–1551 (2010)
- 14.
X. Dong, X. Ji, J. Jing, M. Li, J. Li, W. Yang, Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C 114, 2070–2074 (2010)
- 15.
Z. Shan, J. Wu, F. Xu, F.-Q. Huang, H. Ding, Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction. J. Phys. Chem. C 112, 15423–15428 (2008)
- 16.
B. Pietrobon, M. McEachran, V. Kitaev, Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3, 21–26 (2009)
- 17.
B. Wiley, Y. Sun, Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 40, 1067–1076 (2007)
- 18.
W.R. Rolim, M.T. Pelegrino, B. de Araújo Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodigues, M. Brocchi, A.B. Seabra, Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463, 66–74 (2019)
- 19.
N. Durán, P.D. Marcato, M. Durán, A. Yadav, A. Gade, M. Rai, Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl. Microbiol. Biotechnol. 90, 1609–1624 (2011)
- 20.
N. Durán, A.B. Seabra, Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl. Microbiol. Biotechnol. 95, 275–288 (2012)
- 21.
N. Durán, A.B. Seabra, Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Curr. Nanosci. 14, 82–94 (2018)
- 22.
S. Davidović, V. Lazić, I. Vukoje, J. Papan, S.P. Anhrenkiel, S. Dimitrijević, J.M. Nedeljković, Dextran coated silver nanoparticles—chemical sensor for selective cysteine detection. Colloids Surf. B 160, 184–191 (2017)
- 23.
S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 9, 1–9 (2019)
- 24.
M. Bhagat, R. Anand, R. Datt, V. Gupta, S. Arya, Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J. Inorg. Organomet. Polym. 29, 1039–1047 (2019)
- 25.
M. Akter, M.M. Rahman, A.K.M.A. Ullah, M.T. Sikder, T. Hosokawa, T. Saito, M. Kurasaki, Brassica rapa var. japonica leaf extract mediated green synthesis of crystalline silver nanoparticles and evaluation of their stability, cytotoxicity and antibacterial activity. J. Inorg. Organomet. Polym. 28, 1483–1493 (2018)
- 26.
Y. Gavamukulya, E.N. Maina, A.M. Meroka, E.S. Madivoli, H.A. El-Shemy, F. Wamunyokoli, G. Magoma, Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata. J. Inorg. Organomet. Polym. (2019).
- 27.
L. Huang, Y. Sun, S. Mahmud, H. Liu, Biological and environmental applications of silver nanoparticles synthesized using the aqueous extract of Gingo biloba leaf. J. Inorg. Organomet. Polym. (2019).
- 28.
P. Velusamy, J. Das, R. Pachaiappan, B. Vaseeharan, K. Pandian, Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind. Crop. Prod. 66, 103–109 (2015)
- 29.
R. Sood, D.S. Chopra, Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Mater. Sci. Eng. C 92, 575–589 (2018)
- 30.
R. Rajan, K. Chandran, S.L. Harper, S.-I. Yun, P.T. Kalaichelvan, Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind. Crop. Prod. 70, 356–373 (2015)
- 31.
J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc. Biosyst. Eng. 32, 79 (2008)
- 32.
S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016)
- 33.
M. Milutinović, N. Radovanović, M. Rajilić-Stojanović, S. Šiler-Marinković, S. Dimitrijević, S. Dimitrijević-Branković, Microwave-assisted extraction for the recovery of antioxidants from waste Equisetum arvense. Ind. Crop. Prod. 61, 388–397 (2014)
- 34.
F.C.H.M. Do Monte, J.G. dos Santos, M. Russi, V.M.N. Bispo Lanziotti, L.K.A.M. Leal, G.M. de Andrade Cunha, Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol. Res. 49, 239–243 (2004)
- 35.
N.S. Sandhu, S. Kaur, D. Chopra, Equietum arvense: pharmacology and phytochemistry—a review. Asian. J. Pharm. Clin. Res. 3, 146–150 (2010)
- 36.
R. Stefanović, Paradigma održivog razvoja poljoprivrede - strateški koncept zaštite životne sredine. Ecologica 17, 112–114 (2010)
- 37.
J.M. Čanadanović-Brunet, G.S. Ćetković, S.M. Djilas, V.T. Tumbas, S.S. Savatović, A.I. Mandić, S.L. Markov, D.D. Cvetković, Radical scavenging and antimicrobial activity of horsetail (Equisetum arvense L.) extracts. Int. J. Food Sci. Technol. 44, 269–278 (2009)
- 38.
K.P. Bankura, D. Maity, M.M.R. Mollick, D. Mondal, B. Bhowmick, M.K. Bain, A. Chakraborty, J. Sarkar, K. Acharya, D. Chattopadhyay, Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohyd. Polym. 89, 1159–1165 (2012)
- 39.
J.M. Herrero-Martinez, M. Sanmartin, M. Roses, E. Bosch, C. Rafols, Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis 26, 1886–1895 (2005)
- 40.
N. Sauerwald, M. Schwenk, J. Polster, E. Bengsch, Spectrometric pK determination of daphnetin, chlorogenic acid and quercetin. Zeitschrift fur naturforschung B 53(3), 315–321 (1998
- 41.
K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)
- 42.
T. Huang, X.-H.N. Xu, Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J. Mater. Chem. 20, 9867–9876 (2010)
- 43.
P. Anbu, S.C.B. Gopinath, H.S. Yun, C.-G. Lee, Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. J. Mol. Struct. 1177, 302–309 (2019)
- 44.
C.N. Lok, C.M. Ho, M. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12, 527–534 (2007)
- 45.
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.N. Kouri, J.T. Ramirez, M.J. Yacaman, The antibacterial effect of silver nanoparticles. Nanotechnology 16, 2346 (2005)
- 46.
Z.M. Xiu, J. Mao, P.J.J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 45, 9003–9008 (2011)
- 47.
L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)
- 48.
D.H. Kim, J.C. Park, G.E. Jeon, C.S. Kim, J.H. Seo, Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioproc. Eng. 22, 210–217 (2017)
- 49.
M.A. Raza, Z. Kanwal, A. Rauf, A.N. Sabri, S. Riaz, S. Naseem, Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by Wet chemical routes. Nanomaterials (Basel, Switzerland) 6, 74 (2016)
- 50.
I. Vukoje, E. Džunuzović, V. Vodnik, S. Dimitrijević, S.P. Ahrenkiel, J.M. Nedeljković, Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. J. Mater. Sci. 49, 6838–6844 (2014)
- 51.
I. Vukoje, E. Džunuzović, D. Lončarević, S. Dimitrijević, S.P. Ahrenkiel, J.M. Nedeljković, Synthesis, characterization, and antimicrobial activity of silver nanoparticles on poly(GMA-co-EGDMA) polymer support. Polym. Compos. 38, 1206–1214 (2017)
- 52.
V. Lazić, I. Smičiklas, J. Marković, D. Lončarević, J. Dostanić, S.P. Ahrenkiel, J.M. Nedeljković, Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. Vacuum 148, 62–68 (2018)
- 53.
V. Lazić, K. Mihajlovski, A. Mraković, E. Illés, M. Stoiljković, S.P. Ahrenkiel, J.M. Nedeljković, Antimicrobial activity of silver nanoparticles supported by magnetite. ChemistrySelect 4, 4018–4024 (2019)
- 54.
C. Cattò, E. Garuglieri, L. Borruso, D. Erba, M.C. Casiraghi, F. Cappitelli, F. Villa, S. Zecchin, R. Zanchi, Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in vitro gut model. Environ. Pollut. 245, 754–763 (2019)
- 55.
M. Panaček, R. Kolar, R. Večerova, J. Prucek, V. Soukupova, P. Kryštof, R. Hamal, L. Zboril, L. Kvitek, Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30, 6333–6340 (2009)
|
|
|
|
|
|
|
|
|