Product List Home Main Product Plant Extract Natural Ingredients Solution Contact Us Exhibition
Dihydromyricetin
Myricetin
Luteolin
amygdalin
Chlorogenic acid
apigenin
Magnolia bark extract
magnolol
Honokiol
Macleaya cordata extract
sanguinarine
Chelerythrine
rosemary leaf extract
rosmarnic aicd
Carnosic acid
Ursolic acid
carnosic acid liquid oil
green coffee bean extract
honeysuckle flower extract
Banaba leaf extract
Loquat leaf extract
Fisetin
Polydatin
mangiferin
Betulin
huperzine a
Ferulic acid
Resveratrol

Polydatin 

Polydatin

English name: Polydatin
Latin Name: Polygonum cuspidatum
Specification: 98% Polydatin
Use Part : Herb
Appearance: white fine powder
Mesh size: 100% pass 80 Mesh
Test Method: HPLC

What is Polydatin ?

Giant knotweed extract polydatin is the glycoside of resveratrol originally isolated from the Chinese herb Polygonum cuspidatum. The polydatin has been shown to inhibit platelet aggregation and elevate the ratios of LDL-C/HDL-C and TC/HDL-C. Myocardial cell, white blood cell, vascular smooth muscle cell, and endothelial cell studies report that polydatin can inhibit ICAM-1 expression, elevate Ca2+, weaken white blood cell-endothelial cell adhesion, and activate KATP channels.

 

Function:

1. Antibacterial, antithrombotic, antiinflammatory and antianaphylaxis

2. Preventing cancer, especially breast cancer, prostate cancer, endometrial cancer and ovary cancer, due to its estrogen role.

3. Antioxidation, delaying aging, preventing osteoporosis, acne(whelk) and dementia in the elderly.

4. Lowering cholesterin and the blood viscosity, reducing the risk of arteriosclerosis, cardio-cerebrovascular disease and heart disease

5. Owning good efficacy for treatment of AIDS

 

For more product information pls contact email sales09@staherb.cn

 

 

Item name

Polygonum cuspidatum extract

 

 

Appearance     

White crystalline powder

Part of used

Root

Test Method      

HPLC

Active ingredient

Polydatin

Specs Available

50-99%

CAS NO.

65914-17-2

Molecular Weight

390.38

Molecular Formula

C20H22O8

Sulphated Ash

<3.0%

Loss on drying 

<3.0% 

Total Plate Count

<1000cfu/g 

Yeast&Mold 

<100cfu/g

E.Coli

Negative

S.Aureus

Negative  

Salmonella

Negative

Pesticides

Negative

 

Shelf life

2 years

Package

25kg/fiber drum

Storage

Store in cool and dry places. Keep away from strong light.

Items

Specification

Appearance

White powder

Odor

Characteristic

Taste

Characteristic

Mesh size

Pass 80 mesh

Loss on drying

≤5%

Heavy metals

<10ppm

As

<1ppm

Pb

<3ppm

Assay

Result

Total Plate Count

<1000cfu/g

Yeast & Mold

<100cfu/g

E.Coli

Negative

Salmonella

Negative

 

References

  1. 1.

    Peng, W., Qin, R. X., Li, X. L., & Zhou, H. (2013). Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review. Journal of Ethnopharmacology, 148, 729–745.

  2. 2.

    Wang, X. M., Song, R., Chen, Y. Y., Zhao, M., & Zhao, K. S. (2013). Polydatin-a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opinion on Investigational Drugs, 22, 169–179.

  3. 3.

    Hao, J., Chen, C., Huang, K., Huang, J., Li, J., Liu, P., & Huang, H. (2014). Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway. European Journal of Pharmacology, 745, 152–165.

  4. 4.

    Cook, J., Addicks, W., & Wu, Y. H. (2008). Application of the biopharmaceutical classification system in clinical drug development—an industrial view. The AAPS Journal, 10, 306–310.

  5. 5.

    Pouton, C. W., & Porter, C. J. H. (2008). Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Advanced Drug Delivery Reviews, 60, 625–637.

  6. 6.

    Viskupicova, J., Danihelova, M., Ondrejovic, M., Liptaj, T., & Sturdik, E. (2010). Lipophilic rutin derivatives for antioxidant protection of oil-based foods. Food Chemistry, 123, 45–50.

  7. 7.

    Liu, L. Y., Jin, C., & Zhang, Y. (2014). Lipophilic phenolic compounds (Lipo-PCs): emerging antioxidants applied in lipid systems. RSC Advances, 4, 2879–2891. 

  8. 8.

    Céliz, G., Martearena, M. R., Scaroni, E., & Daz, M. (2012). Kinetic study of the alkyl flavonoid ester prunin 6″-O-laurate synthesis in acetone catalysed by immobilised Candida antarctica lipase B. Biochemical Engineering Journal, 69, 69–74.

  9. 9.

    González-Sabín, J., Morán-Ramallal, R., & Rebolledo, F. (2011). Regioselective enzymatic acylation of complex natural products: expanding molecular diversity. Chemical Society Reviews, 40, 5321–5335.

  10. 10.

    Katsoura, M. H., Polydera, A. C., Tsironis, L., Tselepis, A. D., & Stamatis, H. (2006). Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency. Journal of Biotechnology, 123, 491–503.

  11. 11.

    Céliz, G., Audisio, M. C., & Daz, M. (2010). Antimicrobial properties of prunin, a citric flavanone glucoside, and its prunin 6″-O-auroyl ester. Journal of Applied Microbiology, 109, 1450–1457.

  12. 12.

    Salamone, S., Guerreiro, C., Cambon, E., André, I., Remaud-Siméon, M., & Mulard, L. A. (2015). Programmed chemo-enzymatic synthesis of the oligosaccharide component of a carbohydrate-based antibacterial vaccine candidate. Chemical Communications, 51, 2581–2584.

  13. 13.

    Iglesias, L. E., Lewkowicz, E. S., Medici, R., Bianchi, P., & Iribarren, A. M. (2015). Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnology Advances, 33, 412–434.

  14. 14.

    Liu, J., & Linhardt, R. J. (2014). Chemoenzymatic synthesis of heparan sulfate and heparin. Natural Product Reports, 31, 1676–1685.

  15. 15.

    Clouthier, C. M., & Pelletier, J. N. (2012). Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chemical Society Reviews, 41, 1585–1605.

  16. 16.

    Gumel, A. M., Annuar, M. S. M., Heidelberg, T., & Chisti, Y. (2011). Lipase mediated synthesis of sugar fatty acid esters. Process Biochemistry, 46, 2079–2090.

  17. 17.

    Wang, Z. Y., Bi, Y. H., Yang, R. L., Duan, Z. Q., Nie, L. H., Li, X. Q., Zong, M. H., & Wu, J. (2015). The halo-substituent effect on Pseudomonas cepacia lipase-mediated regioselective acylation of nucleosides: a comparative investigation. Journal of Biotechnology, 212, 153–158.

  18. 18.

    Wang, Z. Y., Bi, Y. H., Li, X. Q., & Zong, M. H. (2013). Influence of substituent groups in regioselective acylation of nucleosides by Novozym 435 lipase. Process Biochemistry, 48, 1208–1211.

  19. 19.

    Bi, Y. H., Du, W. Y., Wang, Z. Y., Chen, X. M., Nie, L. H., & Zong, M. H. (2014). Understanding the behavior of Thermomyces lanuginosus lipase in acylation of pyrimidine nucleosides possessing 2′-substituent. Applied Biochemistry and Biotechnology, 174, 556–563.

  20. 20.

    Li, X. F., Zong, M. H., & Zhao, G. L. (2010). Highly regioselective enzymatic synthesis of 5′-O-stearate of 1-β-D-arabinofuranosylcytosine in binary organic solvent mixtures. Applied Microbiology and Biotechnology, 88, 57–63.

  21. 21.

    Zong, M. H., Wu, H., & Tan, Z. Y. (2008). Substantially enhancing enzymatic regioselective acylation of 1-β-D-arabinofuranosylcytosine with vinyl caprylate by using a co-solvent mixture of hexane and pyridine. Chemical Engineering Journal, 144, 75–78.

  22. 22.

    Moniruzzaman, M., Nakashima, K., Kamiya, N., & Goto, M. (2010). Recent advances of enzymatic reactions in ionic liquids. Biochemical Engineering Journal, 48, 295–314.

  23. 23.

    Angell, C. A., Ansari, Y., & Zhao, Z. (2012). Ionic liquids: past, present and future. Faraday Discussions, 154, 9–27.

  24. 24.

    Gu, Y., & Jérôme, F. (2013). Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 42, 9550–9570.

  25. 25.

    Perez-Sanchez, M., Sandoval, M., Hernaiz, M. J., & de Maria, P. D. (2013). Biocatalysis in biomass-derived solvents: the quest for fully sustainable chemical processes. Current Organic Chemistry, 17, 1188–1199.

  26. 26.

    Pace, V., Hoyos, P., Castoldi, L., de María, P. D., & Alcántara, A. R. (2012). 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem, 5, 1369–1379.

  27. 27.

    Pace, V. (2012). 2-Methyltetrahydrofuran: a versatile eco-friendly alternative to THF in organometallic chemistry. Australian Journal of Chemistry, 65, 301–302. 

  28. 28.

    Simeó, Y., Sinisterra, J. V., & Alcántara, A. R. (2009). Regioselective enzymatic acylation of pharmacologically interesting nucleosides in 2-methyltetrahydrofuran, a greener substitute for THF. Green Chemistry, 11, 855–862. 

  29. 29.

    Gao, W. L., Liu, H., Li, N., & Zong, M. H. (2012). Regioselective enzymatic undecylenoylation of 8-chloroadenosine and its analogs with biomass-based 2-methyltetrahydrofuran as solvent. Bioresource Technology, 118, 82–88.

  30. 30.

    Chen, Z. G., Zhang, D. N., Cao, L., & Han, Y. B. (2013). Highly efficient and regioselective acylation of pharmacologically interesting cordycepin catalyzed by lipase in the eco-friendly solvent 2-methyltetrahydrofuran. Bioresource Technology, 133, 82–86.

  31. 31.

    Gao, W. L., Li, N., & Zong, M. H. (2013). Enzymatic regioselective acylation of nucleosides in biomass-derived 2-methyltetrahydrofuran: kinetic study and enzyme substrate recognition. Journal of Biotechnology, 164, 91–96.

  32. 32.

    Díaz-Rodríguez, A., Fernández, S., Lavandera, I., Ferrero, M., & Gotor, V. (2005). Novel and efficient regioselective enzymatic approach to 3′-, 5′- and 3′, 5′-di-O-crotonyl 2′-deoxynucleoside derivatives. Tetrahedron Letters, 46, 5835–5838.

  33. 33.

    Kim, C. H., Kang, M., Kim, H. J., Chatterjee, A., & Schultz, P. G. (2012). Site-specific incorporation of ɛ-N-crotonyllysine into histones. Angewandte Chemie International Edition, 51, 7246–7249. 

  34. 34.

    Therisod, M., & Klibanov, A. M. (1986). Facile enzymatic preparation of monoacylated sugars in pyridine. Journal of the American Chemical Society, 108, 5638–5640. 

  35. 35.

    Kuo, C. H., Hsiao, F. W., Chen, J. H., Hsieh, C. W., Liu, Y. C., & Shieh, C. J. (2013). Kinetic aspects of ultrasound-accelerated lipase catalyzed acetylation and optimal synthesis of 4′-acetoxyresveratrol. Ultrasonics Sonochemistry, 20, 546–552. 

  36. 36.

    Lavandera, I., Fernandez, S., Magdalena, J., Ferrero, M., Kazlauskas, R. J., & Gotor, V. (2005). An inverse substrate orientation for the regioselective acylation of 3′, 5′-diaminonucleosides catalyzed by Candida antarctica lipase B? ChemBioChem, 6, 1381–1390. 

  37. 37.

    Bommarius, A. S., & Paye, M. F. (2013). Stabilizing biocatalysts. Chemical Society Reviews, 42, 6534–6565. 

  38. 38.

    Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30, 81–87. 

  39. 39.

    Weber, H. K., Weber, H., & Kazlauskas, R. J. (1999). ‘Watching’ lipase-catalyzed acylations using 1H NMR: competing hydrolysis of vinyl acetate in dry organic solvents. Tetrahedron: Asymmetry, 10, 2635–2638. 

  40. 40.

    Gardossi, L., Poulsen, P. B., Ballesteros, A., Hult, K., Švedas, V. K., Vasić-Rački, Đ., Carrea, G., Magnusson, A., Schmid, A., & Wohlgemuth, R. (2010). Guidelines for reporting of biocatalytic reactions. Trends in Biotechnology, 28, 171–180.


Product List  |  Home  |  Main Product  |  Plant Extract  |  Natural Ingredients  |  Solution  |  Contact Us  |  Exhibition  |  Sitemap  |  Mobile Version
  English     简体版     繁體版
HomeContact UsSitemap