產品目錄 Home 主打產品 植物提取物 天然提取物 產品解決方案 聯繫我們 展會
藤茶提取物二氫楊梅素 Dihydromyricetin
楊梅素 Myricetin
木犀草素Luteolin
苦杏仁甙amygdalin
綠原酸Chlorogenic acid
芹菜素apigenin
厚朴提取物Magnolia bark extract
厚朴酚magnolol
和厚朴酚Honokiol
博落回提取物Macleaya cordata extract
血根碱sanguinarine
白屈菜紅碱Chelerythrine
迷迭香提取物rosemary leaf extract
迷迭香酸rosmarnic aicd
鼠尾草酸Carnosic acid
熊果酸Ursolic acid
鼠尾草酸油carnosic acid liquid oil
綠咖啡豆提取物green coffee bean extract
金銀花提取物honeysuckle flower extract
巴拿巴葉提取物Banaba leaf extract
枇杷葉提取物Loquat leaf extract
漆黃素Fisetin
虎杖甙Polydatin
芒果甙mangiferin
白樺脂醇Betulin
石杉碱甲huperzine a
阿魏酸Ferulic acid
白藜蘆醇Resveratrol

虎杖甙Polydatin 

虎杖甙

英文品名:虎杖甙
拉丁名: Polygonum cuspidatum
規格: 98% Polydatin
提取部位 :根
外觀: 白色粉末
目數: 100% pass 80 Mesh
檢測方式: HPLC

What is Polydatin ?

Giant knotweed extract polydatin is the glycoside of resveratrol originally isolated from the Chinese herb Polygonum cuspidatum. The polydatin has been shown to inhibit platelet aggregation and elevate the ratios of LDL-C/HDL-C and TC/HDL-C. Myocardial cell, white blood cell, vascular smooth muscle cell, and endothelial cell studies report that polydatin can inhibit ICAM-1 expression, elevate Ca2+, weaken white blood cell-endothelial cell adhesion, and activate KATP channels.

 

Function:

1. Antibacterial, antithrombotic, antiinflammatory and antianaphylaxis

2. Preventing cancer, especially breast cancer, prostate cancer, endometrial cancer and ovary cancer, due to its estrogen role.

3. Antioxidation, delaying aging, preventing osteoporosis, acne(whelk) and dementia in the elderly.

4. Lowering cholesterin and the blood viscosity, reducing the risk of arteriosclerosis, cardio-cerebrovascular disease and heart disease

5. Owning good efficacy for treatment of AIDS

 

For more product information pls contact email sales09@staherb.cn

 

 

Item name

Polygonum cuspidatum extract

 

 

Appearance     

White crystalline powder

Part of used

Root

Test Method      

HPLC

Active ingredient

Polydatin

Specs Available

50-99%

CAS NO.

65914-17-2

Molecular Weight

390.38

Molecular Formula

C20H22O8

Sulphated Ash

<3.0%

Loss on drying 

<3.0% 

Total Plate Count

<1000cfu/g 

Yeast&Mold 

<100cfu/g

E.Coli

Negative

S.Aureus

Negative  

Salmonella

Negative

Pesticides

Negative

 

Shelf life

2 years

Package

25kg/fiber drum

Storage

Store in cool and dry places. Keep away from strong light.

Items

Specification

Appearance

White powder

Odor

Characteristic

Taste

Characteristic

Mesh size

Pass 80 mesh

Loss on drying

≤5%

Heavy metals

<10ppm

As

<1ppm

Pb

<3ppm

Assay

Result

Total Plate Count

<1000cfu/g

Yeast & Mold

<100cfu/g

E.Coli

Negative

Salmonella

Negative

參考文獻:

  1. 1.

    Peng, W., Qin, R. X., Li, X. L., & Zhou, H. (2013). Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review. Journal of Ethnopharmacology, 148, 729–745.

  2. 2.

    Wang, X. M., Song, R., Chen, Y. Y., Zhao, M., & Zhao, K. S. (2013). Polydatin-a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opinion on Investigational Drugs, 22, 169–179.

  3. 3.

    Hao, J., Chen, C., Huang, K., Huang, J., Li, J., Liu, P., & Huang, H. (2014). Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway. European Journal of Pharmacology, 745, 152–165.

  4. 4.

    Cook, J., Addicks, W., & Wu, Y. H. (2008). Application of the biopharmaceutical classification system in clinical drug development—an industrial view. The AAPS Journal, 10, 306–310.

  5. 5.

    Pouton, C. W., & Porter, C. J. H. (2008). Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Advanced Drug Delivery Reviews, 60, 625–637.

  6. 6.

    Viskupicova, J., Danihelova, M., Ondrejovic, M., Liptaj, T., & Sturdik, E. (2010). Lipophilic rutin derivatives for antioxidant protection of oil-based foods. Food Chemistry, 123, 45–50.

  7. 7.

    Liu, L. Y., Jin, C., & Zhang, Y. (2014). Lipophilic phenolic compounds (Lipo-PCs): emerging antioxidants applied in lipid systems. RSC Advances, 4, 2879–2891. 

  8. 8.

    Céliz, G., Martearena, M. R., Scaroni, E., & Daz, M. (2012). Kinetic study of the alkyl flavonoid ester prunin 6″-O-laurate synthesis in acetone catalysed by immobilised Candida antarctica lipase B. Biochemical Engineering Journal, 69, 69–74.

  9. 9.

    González-Sabín, J., Morán-Ramallal, R., & Rebolledo, F. (2011). Regioselective enzymatic acylation of complex natural products: expanding molecular diversity. Chemical Society Reviews, 40, 5321–5335.

  10. 10.

    Katsoura, M. H., Polydera, A. C., Tsironis, L., Tselepis, A. D., & Stamatis, H. (2006). Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency. Journal of Biotechnology, 123, 491–503.

  11. 11.

    Céliz, G., Audisio, M. C., & Daz, M. (2010). Antimicrobial properties of prunin, a citric flavanone glucoside, and its prunin 6″-O-auroyl ester. Journal of Applied Microbiology, 109, 1450–1457.

  12. 12.

    Salamone, S., Guerreiro, C., Cambon, E., André, I., Remaud-Siméon, M., & Mulard, L. A. (2015). Programmed chemo-enzymatic synthesis of the oligosaccharide component of a carbohydrate-based antibacterial vaccine candidate. Chemical Communications, 51, 2581–2584.

  13. 13.

    Iglesias, L. E., Lewkowicz, E. S., Medici, R., Bianchi, P., & Iribarren, A. M. (2015). Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnology Advances, 33, 412–434.

  14. 14.

    Liu, J., & Linhardt, R. J. (2014). Chemoenzymatic synthesis of heparan sulfate and heparin. Natural Product Reports, 31, 1676–1685.

  15. 15.

    Clouthier, C. M., & Pelletier, J. N. (2012). Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chemical Society Reviews, 41, 1585–1605.

  16. 16.

    Gumel, A. M., Annuar, M. S. M., Heidelberg, T., & Chisti, Y. (2011). Lipase mediated synthesis of sugar fatty acid esters. Process Biochemistry, 46, 2079–2090.

  17. 17.

    Wang, Z. Y., Bi, Y. H., Yang, R. L., Duan, Z. Q., Nie, L. H., Li, X. Q., Zong, M. H., & Wu, J. (2015). The halo-substituent effect on Pseudomonas cepacia lipase-mediated regioselective acylation of nucleosides: a comparative investigation. Journal of Biotechnology, 212, 153–158.

  18. 18.

    Wang, Z. Y., Bi, Y. H., Li, X. Q., & Zong, M. H. (2013). Influence of substituent groups in regioselective acylation of nucleosides by Novozym 435 lipase. Process Biochemistry, 48, 1208–1211.

  19. 19.

    Bi, Y. H., Du, W. Y., Wang, Z. Y., Chen, X. M., Nie, L. H., & Zong, M. H. (2014). Understanding the behavior of Thermomyces lanuginosus lipase in acylation of pyrimidine nucleosides possessing 2′-substituent. Applied Biochemistry and Biotechnology, 174, 556–563.

  20. 20.

    Li, X. F., Zong, M. H., & Zhao, G. L. (2010). Highly regioselective enzymatic synthesis of 5′-O-stearate of 1-β-D-arabinofuranosylcytosine in binary organic solvent mixtures. Applied Microbiology and Biotechnology, 88, 57–63.

  21. 21.

    Zong, M. H., Wu, H., & Tan, Z. Y. (2008). Substantially enhancing enzymatic regioselective acylation of 1-β-D-arabinofuranosylcytosine with vinyl caprylate by using a co-solvent mixture of hexane and pyridine. Chemical Engineering Journal, 144, 75–78.

  22. 22.

    Moniruzzaman, M., Nakashima, K., Kamiya, N., & Goto, M. (2010). Recent advances of enzymatic reactions in ionic liquids. Biochemical Engineering Journal, 48, 295–314.

  23. 23.

    Angell, C. A., Ansari, Y., & Zhao, Z. (2012). Ionic liquids: past, present and future. Faraday Discussions, 154, 9–27.

  24. 24.

    Gu, Y., & Jérôme, F. (2013). Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 42, 9550–9570.

  25. 25.

    Perez-Sanchez, M., Sandoval, M., Hernaiz, M. J., & de Maria, P. D. (2013). Biocatalysis in biomass-derived solvents: the quest for fully sustainable chemical processes. Current Organic Chemistry, 17, 1188–1199.

  26. 26.

    Pace, V., Hoyos, P., Castoldi, L., de María, P. D., & Alcántara, A. R. (2012). 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem, 5, 1369–1379.

  27. 27.

    Pace, V. (2012). 2-Methyltetrahydrofuran: a versatile eco-friendly alternative to THF in organometallic chemistry. Australian Journal of Chemistry, 65, 301–302. 

  28. 28.

    Simeó, Y., Sinisterra, J. V., & Alcántara, A. R. (2009). Regioselective enzymatic acylation of pharmacologically interesting nucleosides in 2-methyltetrahydrofuran, a greener substitute for THF. Green Chemistry, 11, 855–862. 

  29. 29.

    Gao, W. L., Liu, H., Li, N., & Zong, M. H. (2012). Regioselective enzymatic undecylenoylation of 8-chloroadenosine and its analogs with biomass-based 2-methyltetrahydrofuran as solvent. Bioresource Technology, 118, 82–88.

  30. 30.

    Chen, Z. G., Zhang, D. N., Cao, L., & Han, Y. B. (2013). Highly efficient and regioselective acylation of pharmacologically interesting cordycepin catalyzed by lipase in the eco-friendly solvent 2-methyltetrahydrofuran. Bioresource Technology, 133, 82–86.

  31. 31.

    Gao, W. L., Li, N., & Zong, M. H. (2013). Enzymatic regioselective acylation of nucleosides in biomass-derived 2-methyltetrahydrofuran: kinetic study and enzyme substrate recognition. Journal of Biotechnology, 164, 91–96.

  32. 32.

    Díaz-Rodríguez, A., Fernández, S., Lavandera, I., Ferrero, M., & Gotor, V. (2005). Novel and efficient regioselective enzymatic approach to 3′-, 5′- and 3′, 5′-di-O-crotonyl 2′-deoxynucleoside derivatives. Tetrahedron Letters, 46, 5835–5838.

  33. 33.

    Kim, C. H., Kang, M., Kim, H. J., Chatterjee, A., & Schultz, P. G. (2012). Site-specific incorporation of ɛ-N-crotonyllysine into histones. Angewandte Chemie International Edition, 51, 7246–7249. 

  34. 34.

    Therisod, M., & Klibanov, A. M. (1986). Facile enzymatic preparation of monoacylated sugars in pyridine. Journal of the American Chemical Society, 108, 5638–5640. 

  35. 35.

    Kuo, C. H., Hsiao, F. W., Chen, J. H., Hsieh, C. W., Liu, Y. C., & Shieh, C. J. (2013). Kinetic aspects of ultrasound-accelerated lipase catalyzed acetylation and optimal synthesis of 4′-acetoxyresveratrol. Ultrasonics Sonochemistry, 20, 546–552. 

  36. 36.

    Lavandera, I., Fernandez, S., Magdalena, J., Ferrero, M., Kazlauskas, R. J., & Gotor, V. (2005). An inverse substrate orientation for the regioselective acylation of 3′, 5′-diaminonucleosides catalyzed by Candida antarctica lipase B? ChemBioChem, 6, 1381–1390. 

  37. 37.

    Bommarius, A. S., & Paye, M. F. (2013). Stabilizing biocatalysts. Chemical Society Reviews, 42, 6534–6565. 

  38. 38.

    Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Rules for optimization of biocatalysis in organic solvents. Biotechnology and Bioengineering, 30, 81–87. 

  39. 39.

    Weber, H. K., Weber, H., & Kazlauskas, R. J. (1999). ‘Watching’ lipase-catalyzed acylations using 1H NMR: competing hydrolysis of vinyl acetate in dry organic solvents. Tetrahedron: Asymmetry, 10, 2635–2638. 

  40. 40.

    Gardossi, L., Poulsen, P. B., Ballesteros, A., Hult, K., Švedas, V. K., Vasić-Rački, Đ., Carrea, G., Magnusson, A., Schmid, A., & Wohlgemuth, R. (2010). Guidelines for reporting of biocatalytic reactions. Trends in Biotechnology, 28, 171–180.


產品目錄  |  Home  |  主打產品  |  植物提取物  |  天然提取物  |  產品解決方案  |  聯繫我們  |  展會  |  網站地圖  |  手機版
  English     简体版     繁體版
網站首頁聯繫我們網站地圖