Home 主打產品 植物提取物 天然提取物 產品目錄 產品解決方案 展會 聯繫我們
新橙皮甙二氫查爾酮Neohesperidin dihydrochalcone
新橙皮苷Neohesperidin 95%
柚皮苷Naringin 95%-98%
枳實黃酮citrus bioflavonoids
辛弗林synephrine
橙皮苷Hesperidin
柚皮素Naringenin
地奧司明Diosmin
甲基橙皮甙methyl hesperidin
柚皮苷二氫查耳酮naringin dihydrochalcone
莽草酸Shikimic acid
山竹提取物Mangosteen extract
齊墩果酸oleanolic acid
洗樹碱Camptothecin
青蒿素Artemisinin
獐芽菜苦甙Swertimarin
黃芩素baicalein
黃芩苷Baicalin
鹽酸小檗碱Berberine hydrochloride
蘿蔔硫素Sulforaphane
蘿蔔硫甙Glucoraphanin
根皮素Phloretin
根皮甙Phlorizin
元寶楓提取物神經酸nervonic acid
刺五加提取物Siberian Ginseng Extract

柚皮苷Naringin 95%-98% 

柚皮苷

品名: 柚皮苷 98%
Cas號.: 10236-47-2

規格: 98%

檢測方式: HPLC

顏色: 淺黃色至類白色

MF: C27H32O14

MW: 582.55

柚皮苷是黃烷酮柚皮素和二糖新橙皮苷之間的黃烷酮-7-O-糖苷。 類黃酮柚皮苷在柑橘類水果中天然存在,特別是在葡萄柚中,其中柚皮苷是造成水果苦味的原因。 在商業葡萄柚汁生產中,柚皮苷酶可用於消除柚皮苷產生的苦味。 在人體中,柚皮苷通過存在於腸道中的柚苷酶代謝成甙元柚皮素(非苦味)。

當柚皮苷用氫氧化鉀或另一種強碱處理,然後催化氫化時,它變成柚苷二氫查耳酮,這種化合物在閾值濃度下比糖甜約300-1800倍。

柚皮甙Naringin簡介

【產品別名】柚甙、柑橘甙、異橙皮甙

【植物來源】芸香科植物柚(Citrus grandis)果實,葡萄柚 (Citrus paradisi)果實

【產品性狀】類白色或淡黃色粉末,屬於黃酮類化合物。

【產品規格】

98.0% HPLC

【熔點及溶解度】

純品柚皮甙中結晶水的含量及其熔點因結晶和乾燥方法而異,以水作溶劑結晶所得柚皮甙分子中含6~8個結晶水,熔點83;而在110下乾燥至恆重后得到的柚皮苷分子含有2個結晶水,其熔點升至171。溶于甲醇、乙醇、丙酮、醋酸、稀碱溶液和熱水,常溫下,在水中的溶解度為0.1%,75時可達10%。不溶于石油醚、 、苯和氯仿等非極性溶劑。

【含量分析】

檢測條件:柱子:hypersil BDS C18(200*4.6)5um

紫外吸收波長:284nm 流動相:乙腈:水=25:75 進樣量:10ul 樣品濃度:0.2mg/ml左右 溫度:室溫

在上述條件下,待儀器運行平穩,基線平衡后,將對照品及樣品分別注入液相色譜儀,單點外標法計算含量

 

產品詳詢:13657416805

參考文獻:

 

  1. 1.

    Beltran A, Marce RM, Cormack PAG, Borrull F (2010) Synthetic approaches to parabens molecularly imprinted polymers and their applications to the solid-phase extraction of river water samples. Anal Chim Acta 677:72–78

  2. 2.

    Shen ZL, Yuan D, Su QD, Zhang H, Wang J, Zhu JH, Liu YM (2011) Selective solid-phase extraction using molecularly imprinted polymer for analysis of methamidophos in water and soil samples. Biosci Biotechnol Biochem 75:473–479

  3. 3.

    Baggiani C, Baravalle P, Giraudi G, Tozzi C (2007) Molecularly imprinted solid-phase extraction method for the high-performance liquid chromatographic analysis of fungicide pyrimethanil in wine. J Chromatogr A 1141:158–164

  4. 4.

    Advincula RC (2011) Engineering molecularly imprinted polymer (MIP) materials: developments and challenges for sensing and separation technologies. Korean J Chem Eng 28:1313–1321

  5. 5.

    Barde LN, Ghule MM, Roy AA, Mathur VB, Shivhare UD (2013) Development of molecularly imprinted polymer as sustain release drug carrier for propranolol HCL. Drug Dev Ind Pharm 39:1247–1253

  6. 6.

    He JF, Zhu QH, Deng QY (2007) Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers. Spectrochim Acta A 67:1297–1305

  7. 7.

    Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Deliv Rev 57:1742–1778

  8. 8.

    Jagetia GC, Reddy TK (2005) Modulation of radiation-induced alteration in the antioxidant status of mice by naringin. Life Sci 77:780–794

  9. 9.

    Zhai YK, Niu YB, Pan YL, Li CR, Wu XL, Mei QB (2013) Effects of naringin on proliferation, differentiation and maturation of rat calvarial osteoblasts in vitro. China J Chin Mater Med 38:105–111 (in China)

  10. 10.

    Okutucu B, Önal S (2011) Molecularly imprinted polymers for separation of various sugars from human urine. Talanta 87:74–79

  11. 11.

    Hqupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomi-metic sensors. Chem Rev 100:2495–2504

  12. 12.

    Bitar A, Fessi H, Elaissari A (2012) Synthesis and characterization of thermally and glucose-sensitive poly N-vinylcaprolactam-based microgels. J Biomed Nanotechnol 8:709–719

  13. 13.

    Lin ZA, Pang JL, Lin Y, Huang H, Cai ZW, Zhang L, Chen GN (2011) Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst 136:3281–3288 

  14. 14.

    Sellergren B, Lepistoe M, Mosbach K (1988) Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. J Am Chem Soc 110:5853–5860

  15. 15.

    Lee SH, Doong RA (2012) Adsorption and selective recognition of 17 β-estradiol by molecularly imprinted polymers. J Polym Res 19:9939

  16. 16.

    Wulff G (1982) Selective binding to polymers via covalent bonds. Pure Appl Chem 54:2093–2102

  17. 17.

    Wang X, Tang Q, Wang Q, Qiao X, Xu Z (2013) Study of a molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for simultaneous determination of trace trichlorfon and monocrotophos residues in vegetables. J Sci Food Agric. 

  18. 18.

    Xu L, Xu ZF (2012) Molecularly imprinted polymer based on multiwalled carbon nanotubes for ribavirin recognition. J Polym Res 19:9942

  19. 19.

    Xu L, He JF (2010) Preparation of hydrophilic molecularly imprinted nano-spheres and the properties on the drug release and recognition. Acta Scientiarum Natralium Universitatis Sunyatseni 49:61–64 (in Chinese)


Home  |  主打產品  |  植物提取物  |  天然提取物  |  產品目錄  |  產品解決方案  |  展會  |  聯繫我們  |  網站地圖  |  手機版
  English     简体版     繁體版
網站首頁聯繫我們網站地圖