產品目錄 Home 主打產品 植物提取物 天然提取物 產品解決方案 聯繫我們 展會
沙棘果油seabuckthorn berry oil
姜黃素Turmeric Root Extract curcumin
胡椒碱piperine
阿爾法熊果甙alpha arbutin
唾液酸sialic acid
氨基丁酸γ-aminobutyric acid
紅曲米提取物Red yeast extract
紅景天提取物Rhodiola Rosea Extract
蘋果提取物Apple peel extract
虫草素cordycepin
紫錐菊提取物Echinacea extract
石榴皮提取物Pomegranate exract
橄欖葉提取物olive leaf extract
荷葉提取物lotus leaf extract
常春藤提取物Ivy leaf extract
積雪草提取物centella asiatic extract
羥基積雪草苷madecassoside
積雪草甙Asiaticoside
羥基積雪草酸madecassic acid
積雪草總甙Centella total glucosides
當歸提取物angelica extract
大蒜提取物garlic extract
淫羊藿提取物Epimedium extract icariin
問荊提取物Horsetail extract
黃芪提取物Astragalus extract
猴頭菇提取物lion's mane mushroom extract
麥苗汁粉wheat grass juice powder
絞股藍提取物gynostemma pentaphyllum extract
覆盆子提取物raspberry extract
水飛薊提取物milk thistle extract
靈芝提取物Reishi Mushroom Extract
人蔘提取物ginseng extract
大黃素Emodin

荷葉提取物lotus leaf extract 

荷葉提取物荷葉碱

品名:荷葉提取物 
拉丁名:Folium Nelumbinis
有效成分:荷葉碱 1% 2% 5% 10% 50%,98%
檢測方式:HPLC
提取溶劑:乙醇/水
CAS號:475-83-2
分子式:C19H21NO2
分子量:313.39082

荷葉碱是荷葉中的一種阿朴啡型生物碱,為荷葉中的主要降脂活性成分;以曬乾粉碎的荷葉為原料,採用纖維素酶預處理、稀鹽酸浸提、超聲波輔助提取、氯仿萃取一系列方法提取而成。其中江西石城產區的荷葉含荷葉碱 。
中醫學認為,荷葉性味苦澀,平,歸肝、脾、胃、心經。有清暑利濕、升發清陽、涼血止血等功效。荷葉中的生物碱有降血脂作用、抗自由基、抑制高膽固醇血症和動脈硬化等藥療、食療功效,而且還具有抗有絲分裂的作用,有較強的抑菌效果。

【英文名稱】Nuciferin
【別名】(R)-1,2-Dimethoxyaporphine
【拉丁名稱】folium nelumbinis
【分子式】C19H21NO2
【分子量】 295.376
【CAS號】475-83-2
【性狀】高純度的荷葉碱為米黃色至類白色結晶性粉末,純度越高,色澤越淺。

功能一:
荷葉碱具有 的減肥功效

功能二:
荷葉碱擁有卓越的降脂保健作用

產品詳詢:13657416805

 

參考文獻:

 

  1. 1.

    Zhang X, Xu R, Zhang C, Xu Y, Han M, Huang B, et al. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. J Exp Clin Cancer Res. 2017;36(1):118.

  2. 2.

    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Dowell JM, Reardon DA, Quinn JA, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 2007;13(4):1253–9.

  3. 3.

    Kim BM, Hong Y, Lee S, Liu P, Lim JH, Lee YH, et al. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int J Mol Sci. 2015;16(11):26880–913.

  4. 4.

    Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128–34. 

  5. 5.

    Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21–45.

  6. 6.

    Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017 Oct;14(10):611–29.

  7. 7.

    Phillips S, Kuperwasser C. SLUG: critical regulator of epithelial cell identity in breast development and cancer. Cell Adhes Migr. 2014;8(6):578–87.

  8. 8.

    Voutsadakis IA. Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation. J Clin Med. 2016;5(1):E11.

  9. 9.

    Alves CC, Carneiro F, Hoefler H, Becker KF. Role of the epithelial-mesenchymal trasition regulator Slug in primary human cancers. Front Biosci (Landmark Ed). 2009;14:3035–50.

  10. 10.

    Wegner M. From head to toes: the multiple facets of sox proteins. Nucleic Acids Res. 1999;27(6):1409–20.

  11. 11.

    Mansouri S, Nejad R, Karabork M, Ekinci C, Solaroglu I, Aldape KD, et al. Sox2: regulation of expression and contribution to brain tumors. CNS Oncol. 2016;5(3):159–73.

  12. 12.

    Song WS, Yang YP, Huang CS, Lu KH, Liu WH, Wu WW, et al. Sox2, stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc. 2016;79(10):538–45.

  13. 13.

    Garros-Regulez L, Garcia I, Carrasco-Garcia E, Lantero A, Aldaz P, Moreno-Cugnon L, et al. Targeting SOX2 as a therapeutic strategy in glioblastoma. Front Oncol. 2016;6:222.

  14. 14.

    Chin YW, Yoon KD, Kim J. Cytotoxic anticancer candidates from terrestrial plants. Anti Cancer Agents Med Chem. 2009;9(8):913–42.

  15. 15.

    Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM. NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res. 2013;41:D1124–9.

  16. 16.

    Nguyen KH, Ta TN, Pham TH, Nguyen QT, Pham HD, Mishra S, et al. Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide. J Ethnopharmacol. 2012;142(2):488–95. 

  17. 17.

    Ho HH, Hsu LS, Chan KC, Chen HM, Wu CH, Wang CJ. Extract from the leaf of nucifera reduced the development of atherosclerosis via inhibition of vascular smooth muscle cell proliferation and migration. Food Chem Toxicol. 2010;48(1):159–68.

  18. 18.

    Kashiwada Y, Aoshima A, Ikeshiro Y, Chen YP, Furukawa H, Itoigawa M, et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg Med Chem. 2005;13(2):443–8.

  19. 19.

    Nakamura S, Nakashima S, Tanabe G, Oda Y, Yokota N, Fujimoto K, et al. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem. 2013;21(3):779–87.

  20. 20.

    Liu W, Yi DD, Guo JL, Xiang ZX, Deng LF, He L. Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/β-catenin signaling in non-small cell lung cancer. J Ethnopharmacol. 2015;165:83–93.

  21. 21.

    Guo F, Yang X, Li X, Feng R, Guan C, Wang Y, et al. Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters. PLoS One. 2013;8(5):e63770.

  22. 22.

    Qi Q, Li R, Li HY, Cao YB, Bai M, Fan XJ, et al. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach. Acta Pharmacol Sin. 2016;37(7):963–72.

  23. 23.

    Xu Y, Bao S, Tian W, Wen C, Hu L, Lin C. Tissue distribution model and pharmacokinetics of nuciferine based on UPLC-MS/MS and BP-ANN. Int J Clin Exp Med. 2015;8(10):17612–22.

  24. 24.

    Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432(7015):316–23.

  25. 25.

    Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–7.

  26. 26.

    Wang Y, Decker SJ, Sebolt-Leopold J. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther. 2004;3(3):305–13.

  27. 27.

    Fletcher L, Cheng Y, Muschel RJ. Abolishment of the Tyr-15 inhibitory phosphorylation site on cdc2 reduces the radiation-induced G(2) delay, revealing a potential checkpoint in early mitosis. Cancer Res. 2002;62(1):241–50.

  28. 28.

    Junyan P, Shujuan Y, Shulin G, Yan C, Xia X. The antitumor effect of DYC-279 on human hepatocellular carcinoma HepG2 cells. Pharmacology. 2016;97(3–4):177–83.

  29. 29.

    Stark GR, Taylor WR. Control of the G2/M transition. Mol Biotechnol. 2006;32(3):227–48.

  30. 30.

    Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature. 1991;349(6305):132–8.

  31. 31.

    Hershko A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr Opin Cell Biol. 1997;9(6):788–99.

  32. 32.

    Parry DH, O'Farrell PH. The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol. 2001;11(9):671–83.

  33. 33.

    Vorlaufer E, Peters JM. Regulation of the cyclin B degradation system by an inhibitor of mitotic proteolysis. Mol Biol Cell. 1998;9(7):1817–31.

  34. 34.

    Lin H, Liu XY, Subramanian B, Nakeff A, Valeriote F, Chen BD. Mitotic arrest induced by XK469, a novel antitumor agent, is correlated with the inhibition of cyclin B1 ubiquitination. Int J Cancer. 2002;97(1):121–8. 

  35. 35.

    Lee YM, Lim DY, Choi HJ, Jung JI, Chung WY, Park JH. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin. J Med Food. 2009;12(1):8–14.

  36. 36.

    Chien CC, Wu MS, Shen SC, Ko CH, Chen CH, Yang LL, et al. Activation of JNK contributes to evodiamine-induced apoptosis and G2/M arrest in human colorectal carcinoma cells: a structure-activity study of evodiamine. PLoS One. 2014;9(6):e99729. 

  37. 37.

    Yang L, Liang H, Wang Y, Gao S, Yin K, Liu Z, et al. MiRNA-203 suppresses tumor cell proliferation, migration and invasion by targeting Slug in gastric cancer. Protein Cell. 2016;7(5):383–7. 

  38. 38.

    Vitali R, Mancini C, Cesi V, Tanno B, Mancuso M, Bossi G, et al. Slug (SNAI2) down-regulation by RNA interference facilitates apoptosis and inhibits invasive growth in neuroblastoma preclinical models. Clin Cancer Res. 2008;14(14):4622–30.

  39. 39.

    Zhao X, Sun B, Sun D, Liu T, Che N, Gu Q, et al. Slug promotes hepatocellular cancer cell progression by increasing SOX2 and NANOG expression. Oncol Rep. 2015;33(1):149–56. 

  40. 40.

    Yang CY, Chen YD, Guo W, Gao Y, Song CQ, Zhang Q, et al. Bismuth ferrite-based nanoplatform design: an ablation mechanism study of solid tumor and NIR-triggered photothermal/photodynamic combination cancer therapy. Adv Funct Mater. 2018;28:1706827. 

  41. 41.

    Ke D, Yang R, Jing L. Combined diagnosis of breast cancer in the early stage by MRI and detection of gene expression. Exp Ther Med. 2018;16(2):467–72.

  42. 42.

    Yang HW, Menon LG, Black PM, Carroll RS, Johnson MD. SNAI2/Slug promotes growth and invasion in human gliomas. BMC Cancer. 2010;10:301.

  43. 43.

    Carpenter RL, Paw I, Dewhirst MW, Lo HW. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 2015;34(5):546–57.

  44. 44.

    Yao C, Su L, Shan J, Zhu C, Liu L, Liu C, et al. IGF/STAT3/NANOG/Slug signaling axis simultaneously controls epithelial-mesenchymal transition and stemness maintenance in colorectal cancer. Stem Cells. 2016;34(4):820–31.

  45. 45.

    Chen YD, Zhang Y, Dong TX, Xu YT, Zhang W, An TT, et al. Hyperthermia with different temperatures inhibits proliferation and promotes apoptosis through the EGFR/STAT3 pathway in C6 rat glioma cells. Mol Med Rep. 2017;16(6):9401–8. 

  46. 46.

    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. 

  47. 47.

    Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Emerging targets for glioblastoma stem cell therapy. J Biomed Res. 2016;30(1):19–31.

  48. 48.

    van Schaijik B, Davis PF, Wickremesekera AC, Tan ST, Itinteang T. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol. 2018;71(1):88–91.

  49. 49.

    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

  50. 50.

    Azuaje F, Tiemann K, Niclou SP. Therapeutic control and resistance of the EGFR-driven signaling network in glioblastoma. Cell Commun Signal. 2015;13:23.

  51. 51.

    Liu Y, Wu X, Mi Y, Zhang B, Gu S, Liu G, et al. PLGA nanoparticles for the oral delivery of nuciferine: preparation, physicochemical characterization and in vitro/in vivo studies. Drug Deliv. 2017;24(1):443–51.


 


產品目錄  |  Home  |  主打產品  |  植物提取物  |  天然提取物  |  產品解決方案  |  聯繫我們  |  展會  |  網站地圖  |  手機版
  English     简体版     繁體版
網站首頁