產品目錄 Home 主打產品 植物提取物 天然提取物 產品解決方案 聯繫我們 展會
沙棘果油seabuckthorn berry oil
姜黃素Turmeric Root Extract curcumin
胡椒碱piperine
阿爾法熊果甙alpha arbutin
唾液酸sialic acid
氨基丁酸γ-aminobutyric acid
紅曲米提取物Red yeast extract
紅景天提取物Rhodiola Rosea Extract
蘋果提取物Apple peel extract
虫草素cordycepin
紫錐菊提取物Echinacea extract
石榴皮提取物Pomegranate exract
橄欖葉提取物olive leaf extract
荷葉提取物lotus leaf extract
常春藤提取物Ivy leaf extract
積雪草提取物centella asiatic extract
羥基積雪草苷madecassoside
積雪草甙Asiaticoside
羥基積雪草酸madecassic acid
積雪草總甙Centella total glucosides
當歸提取物angelica extract
大蒜提取物garlic extract
淫羊藿提取物Epimedium extract icariin
問荊提取物Horsetail extract
黃芪提取物Astragalus extract
猴頭菇提取物lion's mane mushroom extract
麥苗汁粉wheat grass juice powder
絞股藍提取物gynostemma pentaphyllum extract
覆盆子提取物raspberry extract
水飛薊提取物milk thistle extract
靈芝提取物Reishi Mushroom Extract
人蔘提取物ginseng extract
大黃素Emodin

阿爾法熊果甙alpha arbutin 

熊果甙

品名:Alpha arbutin

形式:粉末

Cas號.:84380-01-8

分子式:C12H16O7

分子量:272.25

外觀:白色結晶粉末

檢測方式:HPLC

規格:99%

阿爾法熊果苷,中文別名:4-氫苯醌-alpha-D-吡喃葡萄糖甙,對苯二酚-alpha-D-葡萄糖苷,或者對-羥基苯-α-D-吡喃葡萄糖苷,呈白色粉末或者白色結晶狀。α-熊果苷是熊果苷的差相異構體,近年來發現它比熊果苷具有更強烈的酪氨酸酶抑製作用,能阻止黑色素的生成,從而減少皮膚色素沉積,祛除色斑和雀斑,而且對黑色素細胞不產生毒害性、刺激性、致敏性等副作用,同時還有殺菌、消炎的作用,從而引起了化妝品市場的廣氾關注。α-熊果苷在很低的濃度下就能抑制酪氨酸酶的活性,雖然抑制機理不同于熊果苷,但其強度是熊果苷的近10倍,而且在較高的濃度下對細胞的生長也不產生影響。2002年以來歐美市場已經將α-熊果苷作為一種安全高效的亮膚活性劑推向高端化妝品市場,是二十一世紀最理想的皮膚美白祛斑活性劑。

主要用途: 用於高級化妝品中,可配製成護膚霜,高級珍珠霜等,既能美容護膚,又能消炎、抗刺激性。

燒燙傷藥原料:熊果苷是新型燒燙傷藥主要成分,特點是快速止痛,消炎力強,迅速消除紅腫,癒合快,不留疤痕。

腸道消炎用藥原料:殺菌、消炎效果好,無毒副作用。

產品性狀 本品為白色結晶狀。

產品規格 99.5%min

檢測方法 HPLC

CAS 編碼 84380-01-8

產品詳詢:13657416805

參考文獻:

  1. 1. 

    Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomedicine & Pharmacotherapy. 2019;110:582–93.

  2. 2. 

    Desmedt B, Courselle P, De Beer JO, Rogiers V, Grosber M, Deconinck E, et al. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe. J Eur Acad Dermatol Venereol. 2016;30(6):943–50. 

  3. 3. 

    Couteau C, Coiffard L. Overview of skin whitening agents: drugs and cosmetic products. Cosmetics. 2016;3(3). 

  4. 4. 

    Migas P, Krauze-Baranowska M. The significance of arbutin and its derivatives in therapy and cosmetics. Phytochem Lett. 2015;13:35–40.

  5. 5. 

    Sccs, Degen GH. Opinion of the Scientific Committee on Consumer safety (SCCS)—opinion on the safety of the use of α-arbutin in cosmetic products. Regul Toxicol Pharmacol. 2016;74:75–6. 

  6. 6. 

    Won J, Park J. Improvement of arbutin trans-epidermal delivery using radiofrequency microporation. 2014.

  7. 7. 

    Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–70. 

  8. 8. 

    Mahato R. Chapter 13—microneedles in drug delivery. In: Mitra AK, Cholkar K, Mandal A, editors. Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Boston: Elsevier; 2017. p. 331–53.

  9. 9. 

    Pamornpathomkul B, Ngawhirunpat T, Tekko IA, Vora L, McCarthy HO, Donnelly RF. Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. Eur J Pharm Sci. 2018;121:200–9.

  10. 10. 

    Simon GA, Maibach HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations—an overview. Skin Pharmacol Appl Ski Physiol. 2000;13(5):229–34.

  11. 11. 

    Touitou E, Meidan VM, Horwitz E. Methods for quantitative determination of drug localized in the skin. J Control Release. 1998;56(1–3):7–21.

  12. 12. 

    Cilurzo F, Minghetti P, Sinico C. Newborn pig skin as model membrane in in vitro drug permeation studies: a technical note. AAPS PharmSciTech. 2007;8(4):E94-E.  

  13. 13. 

    Davies DJ, Ward RJ, Heylings JR. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol In Vitro. 2004;18(3):351–8. 

  14. 14. 

    El-Say KM. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper-Lin small composite design. Drug Des Dev Ther. 2016;10:825–39. 

  15. 15. 

    Machekposhti SA, Soltani M, Najafizadeh P, Ebrahimi SA, Chen P. Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid. J Controlled Release. 2017;261:87–92.

  16. 16. 

    Larrañeta E, Moore J, Vicente-Pérez EM, Gonzalez Vazquez P, Lutton R, David Woolfson A, et al. A proposed model membrane and test method for microneedle insertion studies. 2014.

  17. 17. 

    Yao G, Quan G, Lin S, Peng T, Wang Q, Ran H, et al. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: in vitro and in vivo characterization. Int J Pharm. 2017;534(1–2):378–86.

  18. 18. 

    Structural characterization of inclusion complex of arbutin

  19. 19. 

    Larrañeta E, Henry M, Irwin NJ, Trotter J, Perminova AA, Donnelly RF. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr Polym. 2018;181:1194–205.

  20. 20. 

    LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams RO 3rd. Thermal processing of PVP- and HPMC-based amorphous solid dispersions. AAPS PharmSciTech. 2016;17(1):120–32. 

  21. 21. 

    Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–44.

  22. 22. 

    Zhang M, Ma Y, Wang Z, Han Z, Gao W, Gu Y. Optimizing molecular weight of octyl chitosan as drug carrier for improving tumor therapeutic efficacy. Oncotarget. 2017;8(38):64237–49.

  23. 23. 

    Kariduraganavar MY, Kittur AA, Kamble RR. Chapter 1—polymer synthesis and processing. In: Kumbar SG, Laurencin CT, Deng M, editors. Natural and synthetic biomedical polymers. Oxford: Elsevier; 2014. p. 1–31. 

  24. 24. 

    Tritt-Goc J, Kowalczuk J, Pislewski N. Hydration of hydroxypropylmethyl cellulose: effects of pH and molecular mass. Acta Physica Polonica A - Acta Phys Pol A. 2006;108.

  25. 25. 

    Sarkar N, Walker LC. Hydration—dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym. 1995;27(3):177–85.  

  26. 26. 

    Chen CP, Hsieh CM, Tsai T, Yang JC, Chen CT. Optimization and evaluation of a chitosan/hydroxypropyl methylcellulose hydrogel containing toluidine blue O for antimicrobial photodynamic inactivation. Int J Mol Sci. 2015;16(9):20859–72.

  27. 27. 

    Mojumdar EH, Pham QD, Topgaard D, Sparr E. Skin hydration: interplay between molecular dynamics, structure and water uptake in the stratum corneum. Sci Rep. 2017;7(1):15712. 

  28. 28. 

    Verdier-Sevrain S, Bonte F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol. 2007;6(2):75–82. 

  29. 29. 

    Shabbir M, Ali S, Raza M, Sharif A, Akhtar MF, Manan A, et al. Effect of hydrophilic and hydrophobic polymer on in vitro dissolution and permeation of bisoprolol fumarate through transdermal patch. Acta Pol Pharm. 2017;74:187–97. 

  30. 30. 

    Grubauer G, Elias PM, Feingold KR. Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res. 1989;30(3):323–33. 

  31. 31. 

    Menon GK, Feingold KR, Elias PM. Lamellar body secretory response to barrier disruption. J Investig Dermatol. 1992;98(3):279–89

  32. 32. 

    Gupta J, Gill HS, Andrews SN, Prausnitz MR. Kinetics of skin resealing after insertion of microneedles in human subjects. J Control Release. 2011;154(2):148–55.


產品目錄  |  Home  |  主打產品  |  植物提取物  |  天然提取物  |  產品解決方案  |  聯繫我們  |  展會  |  網站地圖  |  手機版
  English     简体版     繁體版