Home 主打产品 植物提取物 天然提取物 产品目录 产品解决方案 展会 联系我们
新橙皮甙二氢查尔酮Neohesperidin dihydrochalcone
新橙皮苷Neohesperidin 95%
柚皮苷Naringin 95%-98%
枳实黄酮citrus bioflavonoids
辛弗林synephrine
橙皮苷Hesperidin
柚皮素Naringenin
地奥司明Diosmin
甲基橙皮甙methyl hesperidin
柚皮苷二氢查耳酮naringin dihydrochalcone
莽草酸Shikimic acid
山竹提取物Mangosteen extract
齐墩果酸oleanolic acid
洗树碱Camptothecin
青蒿素Artemisinin
獐芽菜苦甙Swertimarin
黄芩素baicalein
黄芩苷Baicalin
盐酸小檗碱Berberine hydrochloride
萝卜硫素Sulforaphane
萝卜硫甙Glucoraphanin
根皮素Phloretin
根皮甙Phlorizin
元宝枫提取物神经酸nervonic acid
刺五加提取物Siberian Ginseng Extract

柚皮苷Naringin 95%-98% 

柚皮苷

品名: 柚皮苷 98%
Cas号.: 10236-47-2

规格: 98%

检测方式: HPLC

颜色: 浅黄色至类白色

MF: C27H32O14

MW: 582.55

柚皮苷是黄烷酮柚皮素和二糖新橙皮苷之间的黄烷酮-7-O-糖苷。 类黄酮柚皮苷在柑橘类水果中天然存在,特别是在葡萄柚中,其中柚皮苷是造成水果苦味的原因。 在商业葡萄柚汁生产中,柚皮苷酶可用于消除柚皮苷产生的苦味。 在人体中,柚皮苷通过存在于肠道中的柚苷酶代谢成甙元柚皮素(非苦味)。

当柚皮苷用氢氧化钾或另一种强碱处理,然后催化氢化时,它变成柚苷二氢查耳酮,这种化合物在阈值浓度下比糖甜约300-1800倍。

柚皮甙Naringin简介

【产品别名】柚甙、柑橘甙、异橙皮甙

【植物来源】芸香科植物柚(Citrus grandis)果实,葡萄柚 (Citrus paradisi)果实

【产品性状】类白色或淡黄色粉末,属于黄酮类化合物。

【产品规格】

98.0% HPLC

【熔点及溶解度】

纯品柚皮甙中结晶水的含量及其熔点因结晶和干燥方法而异,以水作溶剂结晶所得柚皮甙分子中含6~8个结晶水,熔点83;而在110下干燥至恒重后得到的柚皮苷分子含有2个结晶水,其熔点升至171。溶于甲醇、乙醇、丙酮、醋酸、稀碱溶液和热水,常温下,在水中的溶解度为0.1%,75时可达10%。不溶于石油醚、 、苯和氯仿等非极性溶剂。

【含量分析】

检测条件:柱子:hypersil BDS C18(200*4.6)5um

紫外吸收波长:284nm 流动相:乙腈:水=25:75 进样量:10ul 样品浓度:0.2mg/ml左右 温度:室温

在上述条件下,待仪器运行平稳,基线平衡后,将对照品及样品分别注入液相色谱仪,单点外标法计算含量

 

产品详询:13657416805

参考文献:

 

  1. 1.

    Beltran A, Marce RM, Cormack PAG, Borrull F (2010) Synthetic approaches to parabens molecularly imprinted polymers and their applications to the solid-phase extraction of river water samples. Anal Chim Acta 677:72–78

  2. 2.

    Shen ZL, Yuan D, Su QD, Zhang H, Wang J, Zhu JH, Liu YM (2011) Selective solid-phase extraction using molecularly imprinted polymer for analysis of methamidophos in water and soil samples. Biosci Biotechnol Biochem 75:473–479

  3. 3.

    Baggiani C, Baravalle P, Giraudi G, Tozzi C (2007) Molecularly imprinted solid-phase extraction method for the high-performance liquid chromatographic analysis of fungicide pyrimethanil in wine. J Chromatogr A 1141:158–164

  4. 4.

    Advincula RC (2011) Engineering molecularly imprinted polymer (MIP) materials: developments and challenges for sensing and separation technologies. Korean J Chem Eng 28:1313–1321

  5. 5.

    Barde LN, Ghule MM, Roy AA, Mathur VB, Shivhare UD (2013) Development of molecularly imprinted polymer as sustain release drug carrier for propranolol HCL. Drug Dev Ind Pharm 39:1247–1253

  6. 6.

    He JF, Zhu QH, Deng QY (2007) Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers. Spectrochim Acta A 67:1297–1305

  7. 7.

    Mayes AG, Whitcombe MJ (2005) Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv Drug Deliv Rev 57:1742–1778

  8. 8.

    Jagetia GC, Reddy TK (2005) Modulation of radiation-induced alteration in the antioxidant status of mice by naringin. Life Sci 77:780–794

  9. 9.

    Zhai YK, Niu YB, Pan YL, Li CR, Wu XL, Mei QB (2013) Effects of naringin on proliferation, differentiation and maturation of rat calvarial osteoblasts in vitro. China J Chin Mater Med 38:105–111 (in China)

  10. 10.

    Okutucu B, Önal S (2011) Molecularly imprinted polymers for separation of various sugars from human urine. Talanta 87:74–79

  11. 11.

    Hqupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomi-metic sensors. Chem Rev 100:2495–2504

  12. 12.

    Bitar A, Fessi H, Elaissari A (2012) Synthesis and characterization of thermally and glucose-sensitive poly N-vinylcaprolactam-based microgels. J Biomed Nanotechnol 8:709–719

  13. 13.

    Lin ZA, Pang JL, Lin Y, Huang H, Cai ZW, Zhang L, Chen GN (2011) Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography. Analyst 136:3281–3288 

  14. 14.

    Sellergren B, Lepistoe M, Mosbach K (1988) Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. J Am Chem Soc 110:5853–5860

  15. 15.

    Lee SH, Doong RA (2012) Adsorption and selective recognition of 17 β-estradiol by molecularly imprinted polymers. J Polym Res 19:9939

  16. 16.

    Wulff G (1982) Selective binding to polymers via covalent bonds. Pure Appl Chem 54:2093–2102

  17. 17.

    Wang X, Tang Q, Wang Q, Qiao X, Xu Z (2013) Study of a molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography for simultaneous determination of trace trichlorfon and monocrotophos residues in vegetables. J Sci Food Agric. 

  18. 18.

    Xu L, Xu ZF (2012) Molecularly imprinted polymer based on multiwalled carbon nanotubes for ribavirin recognition. J Polym Res 19:9942

  19. 19.

    Xu L, He JF (2010) Preparation of hydrophilic molecularly imprinted nano-spheres and the properties on the drug release and recognition. Acta Scientiarum Natralium Universitatis Sunyatseni 49:61–64 (in Chinese)


Home  |  主打产品  |  植物提取物  |  天然提取物  |  产品目录  |  产品解决方案  |  展会  |  联系我们  |  网站地图  |  手机版
  English     简体版     繁體版
网站首页联系我们网站地图