产品目录 Home 主打产品 植物提取物 天然提取物 产品解决方案 联系我们 展会
沙棘果油seabuckthorn berry oil
姜黄素Turmeric Root Extract curcumin
胡椒碱piperine
阿尔法熊果甙alpha arbutin
唾液酸sialic acid
氨基丁酸γ-aminobutyric acid
红曲米提取物Red yeast extract
红景天提取物Rhodiola Rosea Extract
苹果提取物Apple peel extract
虫草素cordycepin
紫锥菊提取物Echinacea extract
石榴皮提取物Pomegranate exract
橄榄叶提取物olive leaf extract
荷叶提取物lotus leaf extract
常春藤提取物Ivy leaf extract
积雪草提取物centella asiatic extract
羟基积雪草苷madecassoside
积雪草甙Asiaticoside
羟基积雪草酸madecassic acid
积雪草总甙Centella total glucosides
当归提取物angelica extract
大蒜提取物garlic extract
淫羊藿提取物Epimedium extract icariin
问荆提取物Horsetail extract
黄芪提取物Astragalus extract
猴头菇提取物lion's mane mushroom extract
麦苗汁粉wheat grass juice powder
绞股蓝提取物gynostemma pentaphyllum extract
覆盆子提取物raspberry extract
水飞蓟提取物milk thistle extract
灵芝提取物Reishi Mushroom Extract
人参提取物ginseng extract
大黄素Emodin

虫草素cordycepin 

虫草素

品名:虫草素

CAS号.: 73-03-0 
分子式: C10H13N5O3 
分子量: 251.24 

纯度:≥1%-98%
检测方式:HPLC-DAD or/and HPLC-ELSD

虫草素又称冬虫夏草素、虫草菌素、蛹虫草菌素,别名3′-脱氧腺苷,是 个从真菌中分离出来的核苷类抗生素。

 目前研究结果表明,虫草素具有肺肾的保护性、抗三高、抗肿瘤、神经保护性、抗炎、抗氧化和免疫调节等生物活性。因此,虫草素在抗衰老、保健、新药研制等领域备受学者关注

理化性质:

虫草素的分子式为C10H13N5O3,相对分子质量为251.25,能溶于水,乙醇,虫草素为含氮配糖体的核酸衔生物,属嘌呤类生物碱;

虫草素化学性质:

熔点:225-229°C

比旋光度: D20 -47°; D27 -42°

沸点:394.4°C

密度:1.2938

折射率:1.7610

储存条件:−20°C

 

产品详询:13657416805

References:

 

  1. 1.

    Cui, J. D. (2015) Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Critical Rev. Biotechnol. 35: 475–484.

     

  2. 2.

    Fung, J., G. Yue, K. P. Fung, X. Ma, X. Q. Yao, and W. H. Ko (2011) Cordyceps militaris extract stimulates Cl(-) secretion across human bronchial epithelia by both Ca(2+)(-) and cAMPdependent pathways. J. Ethnopharmacol. 138: 201–211

  3. 3.

    Tuli, H., S. Sandhu, and A. Sharma (2013) Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3 Biotech. 4: 1–12.

  4. 4.

    Ueda, Y., K. Mori, S. Satoh, H. Dansako, M. Ikeda, and N. Kato (2014) Anti-HCV activity of the Chinese medicinal fungus Cordyceps militarisBiochem. Biophys. Res. Commun. 447: 341–345.

  5. 5.

    Wasser, S. (2014) Medicinal mushroom science: Current perspective, advances, evidences and challenges. Biomed. J. 37: 345–356.

  6. 6.

    Lennon, M. B. and R. J. Suhadolnik (1976) Biosynthesis of 3’-deoxyadenosine by Cordyceps militaris. Mechanism of reduction. Biochim. Biophysic. Acta 425: 532–536.

  7. 7.

    Xiang, L., Y. Li, Y. Zhu, H. Luo, C. Li, X. Xu, C. Sun, J. Song, L. Shi, L. He, W. Sun, and S. Chen (2014) Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis. Genom. 103: 154–159

  8. 8.

    Yin, Y., G. Yu, Y. Chen, S. Jiang, M. Wang, Y. Jin, X. Lan, Y. Liang, and H. Sun (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militarisPLoS One 7: 51853.

  9. 9.

    Zheng, P., Y. Xia, G. Xiao, C. Xiong, X. Hu, S. Zhang, H. Zheng, Y. Huang, Y. Zhou, S. Wang, G. P. Zhao, X. Liu, R. J. St. Leger, and C. Wang (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12: R116.

  10. 10.

    Ni, H., X.H. Zhou, H. H. Li, and W. F. Huang (2009) Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. J. Chromatogr. B 877: 2135–2141.

  11. 11.

    Rottman, F., M. L. Ibershof, and A. J. Guarino (1963) Studies on the synthesis and structure of cordycepin monophosphate. Biochim. Biophysic. Acta 76: 181–187.

  12. 12.

    Wang, H., M. Pan, C. Chang, S. Chang, and W. Hseih (2014) Optimization of ultrasonic-assisted extraction of cordycepin from Cordyceps militaris using orthogonal experimental design. Molecules 199: 20808–20820.

  13. 13.

    Zhou, X., Z. Gong, Y. Su, J. Lin, and K. Tang (2009) Cordyceps fungi: Natural products pharmacological functions and developmental products. J. Pharm. Pharmacol. 61: 279–291.

  14. 14.

    Das, S. K., M. Masuda, M. Hatashita, A. Sakurai, and M. Sakakibara (2010) Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Proc. Biochem. 45: 129–132.

  15. 15.

    Masuda, M., E. Urabe, H. Honda, A. Sakurai, and M. Sakakibara (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militarisEnz. Microb. Technol. 40: 1199–1205.

  16. 16.

    Das, S. K., M. Masuda, M. Hatashita, A. Sakurai, and M. Sakakibara (2008) A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high energy ion beam irradiation. Lett. Appl Microbiol. 47: 534–538.

  17. 17.

    Tang, Y. J. and J. J. Zhong (2003) Scale-up of a liquid surface culture process for hyperproduction of ganoderic acid by the medicinal mushroom Ganoderma lucidum. Biotechnol. Prog. 19: 1842–1846.

  18. 18.

    Kang, C., T. C. Wen, J. C. Kang, Z. B. Meng, G. R. Li, and K. D. Hyde (2014) Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid surface culture. The Scientific World J. 2014: 510627.

  19. 19.

    Mao, X. B. and J. J. Zhong (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol. Prog. 20: 1408–1413.

  20. 20.

    Dong, J. Z., M. R. Lui, C. Lei, X. J. Zheng, and Y. Wang (2012) Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris link. Appl. Biochem. Biotechnol. 166: 2030–2036.

  21. 21.

    López, F. N., M. C. Quintana, and A. G. Fernández (2006) The use of a D-optimal design to model the effects of temperature, NaCl, type and acid concentration on Lactobacillus pentosus IGLAC01. J. Appl. Microbiol. 101: 913–926.

  22. 22.

    Piccolomini, A. A., A. Fiabon, M. Borrotti, and D. De Lucrezia (2016) Optimization of thermophilic trans-isoprenyl diphosphate synthase expression in Escherichia coli by response surface methodology. Biotechnol. Appl. Biochem. DOI: 10.1002/bab.1459

  23. 23.

    Srikanth, R., G. Siddartha, C. H. Sundhar Reddy, B. S. Harish, R. M. Janaki, and K. B. Ramaiah (2015) Antioxidant and antiinflammatory levan produced from Acetobactor xylinum NCIM2526 and its statistical optimization. Carbohyd. Polym. 123: 8–16.

  24. 24.

    Zhou, Q., J. Su, H. Jiang, X. Huang, and Y. Xu (2010) Optimization of phenazine-1-carboxylic acid production by a gacA/ qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology. Appl. Microbiol. Biotechnol. 86: 1761–1773.

  25. 25.

    Zheng, Z. L., X. H. Qiu, and R. C. Han (2015) Identification of the genes involved in the fruiting body production and cordycepin formation of Cordyceps militaris fungus. Mycobiol. 43: 37–42.

  26. 26.

    Das, S. K., M. Masuda, A. Sakurai, and M. Sakakibara (2009) Effects of additives on Cordycepin production using a Cordyceps militaris mutant induced by ion beam irradiation. Afr. J. Biotechnol. 8: 3041–3047.

  27. 27.

    Mao, X. B., T. Eksriwong, S. Chauvatcharin, and J. J. Zhong (2005) Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militarisProc. Biochem. 40: 1667–1672.

  28. 28.

    Mao, X. B. and J. J. Zhong (2006) Significant effect of NH4 + on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militarisEnz. Microb. Technol. 38: 343–350.

  29. 29.

    Shih, I. L., K. L. Tsai, and C. Hsieh (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militarisBiochem. Eng. J. 33: 193–201.

  30. 30.

    Masuda, M., E. Urabe, A. Sakurai, and M. Sakakibara (2006) Production of cordycepin by surface culture using the medicinal mushroom Cordyceps militarisEnz. Microb. Technol. 40: 1199–1205.

  31. 31.

    Masuda, M., S. K. Das, S. Fujihara, M. Hatashita, and A. Sakurai (2014) Efficient production of cordycepin by the Cordyceps militaris mutant G81-3 for practical use. Proc. Biochem. 49: 181–187

  32.  

 


产品目录  |  Home  |  主打产品  |  植物提取物  |  天然提取物  |  产品解决方案  |  联系我们  |  展会  |  网站地图  |  手机版
  English     简体版     繁體版
网站首页联系我们网站地图